UAS BAHASA INGGRIS
ENGLISH
TASK
Artanged By :
Name : Firliyan Apriansyah
Npm : 2220201041
Lecturer : Dr. Zalzulifa, M.Pd
ELECTRICAL
ENGINEERING MAJOR
FACULTY OF ENGINEERING
MUHAMMADIYAH UNIVERSITY TANGERANG (2022)
Writer : Firliyan Apriansyah
Editor : Firliyan Apriansyah
Reviewer : Rizki Ervino Pria Dipa
List of Activities in ESP for
Electrical Engineering
1. Short Article about Electrical Engineering
2. 5W+1H Sentences
3. Verbal and Nominal Sentences
4. Tenses and It’s Pattern
5. Active and Passive Construction
6. List of Vocabulary
7. Translation into Indonesia
8. Reason Why Writer Uses Tenses
Signals and Systems
The study of
signals and systems is considered a classic subject in the curriculum of most
engineering schools worldwide. The theory of signals and systems is a coherent
and elegant collection of mathematical results that date back to the work of
Fourier and Laplace and many other famous mathematicians and engineers. Signals
and systems theory has proven to be an extremely valuable tool for the past 70
years in many fields of science and engineering, including power systems,
automatic control, communications, circuit design, filtering, and signal
processing. Fantastic advances in these fields have brought revolutionary
changes into our lives. In the United States Department of Defense 1969,
through the ARPA project, developed a risk related to the ARPANET (Advanced
Research Project Agency Network), where they demonstrated how to hardware and
software. At the heart of signals and systems theory is mankind’s historical
curiosity and need to analyze the behavior of physical systems with simple
mathematical models describing the cause and effect relrelationship tween
quantities. For example, Isaac Newton discovered the second law of rigid-body
dynamics over 300 years ago and described it mathematically as a relationship
between the resulting force applied on a body (the input) and its acceleration
(the output), from which one can also obtain the body’s velocity and position
with respect to time. The development of differential calculus by Leibniz and
Newton provided a powerful tool for modeling physical systems in the form of
differential equations implicitly relating the input variable to the output
variable. A fundamental issue in science and engineering is to predict a
system's behavior, or output response, for a given input signal. Where science
may seek to describe natural phenomena modeled as input-output systems,
engineering seeks to design systems by modifying and analyzing such models.
This issue is recurrent in the design of electrical or mechanical systems,
where a system’s output signal must respond appropriately to selected input
signals. In this case, a mathematical input-output model of the system would be
analyzed to predict the behavior of the output of the system. For example, in
the design of a simple resistorcapacitor electrical circuit to be used as a
filter, the engineer would first specify the desired attenuation of a
sinusoidal input voltage of a given frequency at the output of the filter.
Then, the design would proceed by selecting the appropriate resistance R and
capacitance C in the differential equation model of the filter in order to
achieve the attenuation specification. The filter can then be built using
actual electrical components. A signal is defined as a function of time
representing the evolution of a variable. Certain types of input and output
signals have special properties with respect to linear time-invariant systems.
Such signals include sinusoidal and exponential functions of time. These
signals can be linearly combined to form virtually any other signal, which is
the basis of the Fourier series representation of periodic signals and the
Fourier transform representation of aperiodic signals. The Fourier
representation opens up a whole new interpretation of signals in terms of their
frequency contents called the frequency spectrum. Furthermore, in the frequency
domain, a linear time-invariant system acts as a filter on the frequency
spectrum of the input signal, attenuating it at some frequencies while
amplifying it at other frequencies. This effect is called the frequency response
of the system. These frequency domain concepts are fundamental in electrical
engineering, as they underpin the fields of communication systems, analog and
digital filter design, feedback control, power engineering, etc. Well-trained
electrical and computer engineers think of signals as being in the frequency
domain probably just as much as they think of them as functions of time. The
Fourier transform can be further generalized to the Laplace transform in
continuous time and the z-transform in discrete time. The idea here is to
define such transforms even for signals that tend to infinitely with time. We
chose to adopt the notation X( jω), instead of X(ω) or X( f ), for the Fourier
transform of a continuous-time signal x(t). This is consistent with the Laplace
transform of the signal denoted as X(s), since then X( jω) = X(s)|s = jω. The
same remark goes for the discrete-time Fourier transform: X(ejω) = X(z)|z = e
jω.
Signals What is Signal?
The signal is
time varying physical phenomenon that is intended to convey information.
OR
The signal is a function of time.
OR
The signal is a function of one or
more independent variables, which contain some information.
A signal is a
function of one or more variables that conveys information about some (usually
physical) phenomenon. Some examples of signals include:
• a human voice
• a voltage in an electronic circuit
• the temperature of a room controlled by a thermostat system
• the position, velocity, and acceleration of an aircraft
• the acceleration measured by an accelerometer in a cell phone
• the force measured by a force sensor in a robotic system
• the electromagnetic waves used to transmit information in wireless
computer networks
• a digitized photograph
• a digitized music recording
• the evolution of a stock market index over time
❖ Classification of Signals
Signals can be classified based on the number of independent
variables with which they are associated. A signal that is a function of only
one variable is said to be one dimensional. Similarly, a signal that is a
function of two or more variables is said to be multi-dimensional. Human speech
is an example of a one-dimensional signal. In this case, we have a signal
associated with fluctuations in air pressure as a function of time. An example
of a two-dimensional signal is a monochromatic image. In this case, we have a
signal that corresponds to a measure of light intensity as a function of
horizontal and vertical position. A signal can also be classified on the basis
of whether it is a function of continuous or discrete variables. A signal that
is a function of continuous variables (e.g., a real variable) is said to be
continuous time. Similarly, a signal that is a function of discrete variables
(e.g., an integer variable) is said to be discrete time. Although the
independent variable need not represent time, for matters of convenience, much
of the terminology is chosen as if this were so.

(a)
(b)
Figure 1.1: Graphical
representations of (a) continuous-time and (b) discretetime signals.
For example, a digital image (which consists of a rectangular array
of pixels) would be referred to as a discrete-time signal, even though the
independent variables (i.e., horizontal and vertical position) do not actually
correspond to time. If a signal is a function of discrete variables (i.e.,
discrete time) and the value of the function it self is also discrete, the
signal is said to be digital. Similarly, if a signal is a
function of continuous variables,
and the value of the function itself is also continuous, the signal is said to
be analog.
Many phenomena
in our physical world can be described in terms of continuous-time signals.
Some examples of continuous-time signals include voltage or current waveforms
in an electronic circuit; electrocardiograms, speech, and music recordings;
position, velocity, and acceleration of a moving body; forces and torques in a
mechanical system; and flow rates of liquids or gases in a chemical process.
Any signals processed by digital computers (or other digital devices) are
discretetime in nature. Some examples of discrete-time signals include digital
video, digital photographs, and digital audio data. A discrete-time signal may
be inherently discrete or correspond to a sampled version of a continuous-time
signal. An example of the former would be a signal corresponding to the Dow
Jones Industrial Average stock market index (which is only defined on daily
intervals), while an example of the latter would be the sampled version of a
(continuous-time) speech signal.
• Notation and Graphical Representation of
Signals
In the case of
discrete-time signals, we sometimes refer to the signal as a sequence. The nth
element of a sequence x is denoted as either x(n) or xn. Figure 1.1 shows how continuous-time and discrete-time signals are
represented graphically.
• Examples
of Signals
A number of examples of signals have been
suggested previously. Here, we provide some graphical representations of
signals for illustrative purposes. Figure
1.2 depicts a digitized speech signal.
Figure 1.3 shows an example of a monochromatic image. In this case, the
signal represents light intensity as a function of two variables (i.e.,
horizontal and vertical position).
Systems What is a System?
The system is a
device or combination of devices, which can operate on signals and produce a
corresponding response. Input to a system is called excitation and output from
it is called as Response. For one or more inputs, the system can have one or
more outputs. Example: Communication Systems.
A system is an entity
that processes one or more input signals in order to produce one or more output
signals, as shown in Figure 1.4.
Such an entity is represented mathematically by a system of one or more
equations. In a communication system, the input might represent the message to
be sent, and the output might represent the received message. In a robotics
system, the input might represent the desired position of the end effector
(e.g., gripper), while the output could represent the actual position.
Figure 1.2: Segment of digitized human speech.
Figure 1.3: A monochromatic image.
Output Signals|{z} more outputs.
❖ Classification of Systems
A system can be
classified based on the number of inputs and outputs it has. A system with only
one input is described as single input, while a system with multiple inputs is
described as multi-input. Similarly, a system with only one output is said to be
single output, while a system with multiple outputs is said to be multioutput.
Two commonly occurring types of systems are single-input single-output (SISO)
and multi-input multi-output (MIMO). A system can also be classified based on
the types of signals with which it interacts. A system that deals with
continuoustime signals is called a continuous-time system. Similarly, a system
that deals with discrete-time signals is said to be a discrete-time system. A
system that handles both continuous- and discrete-time signals, is sometimes
referred to as a hybrid system (or sampled-data system). Similarly, systems
that deal with digital signals are referred to as digital, while systems that
handle analog signals are referred to as analog. If a system interacts with one
dimensional signals, the system is referred to as one-dimensional. Likewise, if
a system handles multi-dimensional signals, the system is said to be
multi-dimensional. Systems can manipulate signals in many different ways and
serve many useful purposes. Sometimes systems serve to extract information from
their input signals. For example, in the case of speech signals, systems can be
used in order to perform speaker identification or voice recognition. A system
might analyze electrocardiogram signals in order to detect heart abnormalities.
Amplification and noise reduction are other functionalities that systems could
offer.
• Examples
of Systems
Systems can manipulate
signals in many different ways and serve many useful purposes. Sometimes
systems serve to extract information from their input signals. For example, in
the case of speech signals, systems can be used in order to perform speaker
identification or voice recognition. A system might analyze electrocardiogram
signals in order to detect heart abnormalities. Amplification and noise
reduction are other functionalities that systems could offer.
One very basic system is
the resistor-capacitor (RC) network shown in Figure 1.5. Here, the input would be the source voltage vs and the output would be the
capacitor voltage vc.
Consider the
signal-processing systems shown in Figure
1.6. The system in Figure 1.6(a)
uses a discrete-time system (such as a digital computer) to process a
continuous-time signal. The system in Figure
1.6(b) uses a continuoustime system (such as an analog computer) to process
a discrete-time signal. The first of these types of systems is ubiquitous in
the world today.
Consider the
communication system shown in Figure
1.7. This system takes a message at one location and reproduces this
message at another location. In this case, the system input is the message to
be sent, and the output is the estimate of the original message. Usually, we
want the message reproduced at the receiver to be as close as possible to the
original message sent by the transmitter.
A system of the general
form shown in Figure 1.8 frequently
appears in control applications. Often, in such applications, we would like an
output to track some reference input as closely as possible. Consider, for
example, a robotics application. The reference input might represent the
desired position of the end effector, while the output represents the actual
position.
➢ 5W+1H SENTENCES
|
No |
5W+1H |
Sentence Building (Question and
Answer) |
|
1 |
Who |
Who is the famous engineers? |
|
Answer |
Fuorier and Laplace |
|
|
2 |
Who |
Who discovered the second law of dynamics of a rigid body?
|
|
Answer |
Isaac Newton |
|
|
3 |
What |
What is Signal |
|
Answer |
Signal is a time varying physical phenomenon which is intended to
convey information |
|
|
4 |
What |
What is Systems |
|
Answer |
Systems is a device or combination of devices, which can operate on
signals and produces corresponding response. |
|
|
5 |
Where |
Where they analyze the behavior
physical systems with simple mathematical models? |
|
Answer |
The United States Department of Defense in 1969, through
the ARPA project that developed a
network related to the ARPANET (Advanced Research Project Agency Network), |
|
|
6 |
Where |
Where can we find discrete time
systems and continuous time systems on computers |
|
Answer |
The first of these types of
systems is ubiquitous in the world today. |
|
|
7 |
Why |
why
the design would proceed by selecting the appropriate resistance R and
capacitance C in the differential equation model of the filter |
|
Answer |
in order to achieve the attenuation specification |
|
|
8 |
Why |
Why is signals are called discrete variables?
|
|
Answer |
If the
signal is a function of a discrete variable (that is, discrete time) and the
value of the function itself is also discrete, the signal is said to be
digital. |
|
|
9 |
When |
When did Isac Newton discovered the second law of rigid-body dynamics
|
|
Answer |
It was discovered for 300 years
|
|
|
10 |
When |
When was the ARPANET project established? |
|
Answer |
The ARPANET project was founded in 1996 |
|
|
11 |
How |
How is invented the signal? |
|
Answer |
The United States Department of Defense in 1969, through the ARPA
project that developed a network related to the ARPANET (Advanced |
|
|
|
|
Research Project Agency
Network), where they demonstrated how to hardware and software |
|
12 |
How |
How do system entities work? |
|
Answer |
that processes one or more input
signals in order to produce one or more output signals |
➢ List Verbal and Nominal sentences
Verbal Sentences
|
No |
Sentences |
V
|
|
01 |
Signal is a function of time. |
V |
|
02 |
The evolution of a stock market index over time. |
V |
|
03 |
System is a device or combination of devices. |
V |
|
04 |
Fantastic advances in these fields have brought
revolutionary changes into our lives |
V |
|
05 |
A system of the general form shown in Figure 1.8 frequently appears in control applications |
V |
|
06 |
A system can be classified based on the number of inputs
and outputs it has.
|
V |
|
07 |
Many phenomena in our physical world can be described in
terms of continuous-time signals
|
V |
|
08 |
A signal is a function of one or more variables that
conveys information about some (usually physical) phenomenon |
V |
|
09 |
Signals can be classified based on the number of
independent variables with which they are associated |
V |
|
10 |
My wish is that the reader will enjoy learning the theory
of signals and systems by using this book |
V |
Nominal Sentences
|
No |
Sentences |
N |
|
01 |
Isaac Newton discovered the second law of rigid-body
dynamics over 300 years ago. |
N |
|
02 |
The electromagnetic waves used to transmit
information in wireless computer networks. |
N |
|
03 |
The
development of differential calculus by Leibniz and Newton provided a
powerful tool for modeling physical systems in the form of differential
equations implicitly relating input variable to the output variable |
N |
|
04 |
The study of signals and systems
is considered to be a classic subject in the curriculum of most engineering
schools throughout the world. |
N |
|
05 |
A signal is defined as a function of time representing the
evolution of a variable.
|
N |
|
06 |
This issue is recurrent in the
design of electrical or mechanical systems, where a system’s output signal
must typically respond in an appropriate way to selected input signals |
N |
|
07 |
A number of examples of signals
have been suggested previously |
N |
|
08 |
Learning about signals and systems
and its applications is often the point at which an electrical or computer
engineering student decides what she or he will specialize |
N |
|
09 |
Similarly, if a signal is a function of continuous
variables, and the value of the function itself is also continuous, the
signal is said to be analog. |
N |
|
10 |
Such an entity is represented
mathematically by a system of one or more equations |
N |
➢ Identify tenses and it’s pattern
|
No |
Sentences |
Pattern |
|
01 |
Isaac Newton discovered the second law of rigid-body
dynamics over 300 years ago. |
Simple past tense (S + Verb II) |
|
02 |
The electromagnetic waves used to transmit
information in wireless computer networks. |
Simple past tense (S + Verb II) |
|
03 |
We have a signal associated with fluctuations in air pressure as a
function of time. |
Simple past tense (S + Verb II) |
|
04 |
Leibniz developed differential calculus. |
Simple past tense (S + Verb II) |
|
05 |
We provide some graphical representations of signals
for illustrative purposes. |
Simple present tenses (S + Verb I) |
|
06 |
A signal is defined as a function of time
representing the evolution of a variable |
Simple past tense (S + Verb II) |
|
07 |
A signal is a function of one or more variables that conveys
information about some (usually physical) phenomenon |
Simple present tense (S + Verb I) |
|
08 |
The evolution of a stock market index over time. |
Simple present tense (S + Verb I ) |
|
09 |
A number of examples of signals have been suggested
previously |
Simple present tense (S + Verb I) |
|
10 |
Signals can be classified based on the number of independent variables
with which they are associated |
Simple past tense (S + Verb II) |
➢ Change sentences either into active or passive construction
|
No |
Sentences |
Active |
Passive |
|
1 |
Isaac Newton discovered the second law of rigid-body
dynamics over 300 years ago. |
√
|
|
|
2 |
The
second law of rigid body dynamics was discovered 300 years ago by Isaac
Newton. |
|
√ |
|
3 |
Leibniz developed differential calculus.
|
√
|
|
|
4 |
Differential calculus developed by Leibniz |
|
√
|
|
5 |
Thermostat system controlled the temperature.
|
√
|
|
|
6 |
The temperature of a room controlled by a thermostat
system. |
|
√
|
|
7 |
Leibniz developed differential calculus |
|
√
|
|
8 |
We provide some graphical representations of signals
for illustrative purposes. |
√
|
|
|
9 |
A signal is defined as a function of time representing
the evolution of a variable |
|
√
|
|
10 |
A number of examples of signals have been suggested
previously |
√
|
|
➢ List of Vocabulary
|
No |
Vocabulary |
Pronoun Spelling |
Meaning |
|
1 |
Use |
/juːs/ |
Menggunakan |
|
2 |
Work |
/wɜːk/ |
Kerja |
|
3 |
Time |
/taɪm/ |
Waktu |
|
4 |
Send |
/sɛnd/ |
Kirim |
|
5 |
Famous |
/ˈfeɪməs/ |
Terkenal |
|
6 |
Give |
/ɡɪv/ |
Memberi |
|
7 |
Design |
/di’zain/ |
Merancang |
|
8 |
Stock |
/sta:k/ |
Menstok |
|
9 |
Learn |
/lɜːn/ |
Belajar |
|
10 |
Order |
/ˈɔːdə(r)/ |
Pesanan |
Translate
Sinyal dan Sistem
Studi tentang sinyal dan sistem
dianggap sebagai mata pelajaran klasik dalam kurikulum sebagian besar sekolah
teknik di seluruh dunia. Teori sinyal dan sistem adalah kumpulan hasil
matematika yang koheren dan elegan yang berasal dari karya Fourier dan Laplace
serta banyak matematikawan dan insinyur terkenal lainnya. Teori sinyal dan
sistem telah terbukti menjadi alat yang sangat berharga selama 70 tahun
terakhir di banyak bidang sains dan teknik, termasuk sistem tenaga, kontrol
otomatis, komunikasi, desain sirkuit, penyaringan, dan pemrosesan sinyal.
Kemajuan fantastis di bidang ini telah membawa perubahan revolusioner ke dalam
hidup kita. Departemen Pertahanan Amerika Serikat pada tahun 1969, melalui
proyek ARPA yang mengembangkan jaringan yang berhubungan dengan ARPANET
(Advanced Research Project Agency Network), dimana mereka mendemonstrasikan
bagaimana hardware dan software. Inti dari teori sinyal dan sistem adalah
keingintahuan historis umat manusia dan kebutuhan untuk menganalisis perilaku
sistem fisik dengan model matematika sederhana yang menjelaskan hubungan
sebab-akibat antara kuantitas. Misalnya, Isaac Newton menemukan hukum kedua
dinamika benda tegar lebih dari 300 tahun yang lalu dan menggambarkannya secara
matematis sebagai hubungan antara gaya yang dihasilkan yang diterapkan pada
benda (input) dan percepatannya (output), dari mana seseorang juga dapat
mendapatkan kecepatan tubuh dan posisi terhadap waktu. Pengembangan kalkulus
diferensial oleh Leibniz dan Newton menyediakan alat yang ampuh untuk
memodelkan sistem fisik dalam bentuk persamaan diferensial yang secara implisit
menghubungkan variabel masukan dengan variabel keluaran. Masalah mendasar dalam
sains dan teknik adalah memprediksi seperti apa perilaku, atau respons keluaran,
dari suatu sistem untuk sinyal input yang diberikan. Sementara ilmu pengetahuan
berusaha untuk menggambarkan fenomena alam yang dimodelkan sebagai sistem
input-output, teknik berusaha untuk merancang sistem dengan memodifikasi dan
menganalisis model tersebut. Masalah ini berulang dalam desain sistem
kelistrikan atau mekanis, di mana sinyal keluaran sistem biasanya harus
merespons dengan cara yang tepat terhadap sinyal masukan yang dipilih. Dalam
hal ini, model input-output matematis dari sistem akan dianalisis untuk
memprediksi perilaku output sistem. Misalnya, dalam desain rangkaian listrik
resistor-kapasitor sederhana untuk digunakan sebagai filter, insinyur
pertama-tama akan menentukan pelemahan tegangan input sinusoidal yang
diinginkan dari frekuensi tertentu pada output filter. Efek ini disebut respons
frekuensi sistem. Konsep domain frekuensi ini sangat mendasar dalam teknik
kelistrikan, karena mereka mendukung bidang sistem komunikasi, desain filter
analog dan digital, kontrol umpan balik, teknik tenaga, dll. Insinyur listrik
dan komputer yang terlatih dengan baik menganggap sinyal sebagai domain
frekuensi mungkin sama seperti mereka menganggapnya sebagai fungsi waktu.
Transformasi Fourier dapat digeneralisasi lebih lanjut ke transformasi Laplace dalam
waktu kontinu dan transformasi z dalam waktu diskrit. Idenya di sini adalah
untuk mendefinisikan transformasi tersebut bahkan untuk sinyal yang cenderung
tak terhingga dengan waktu. Kami memilih untuk mengadopsi notasi X( jω),
daripada X(ω) atau X( f ), untuk transformasi Fourier dari sinyal waktu kontinu
x(t). Hal ini konsisten dengan transformasi Laplace dari sinyal yang
dilambangkan sebagai X(s), karena itu X(jω) = X(s)|s = jω. Pernyataan yang sama
berlaku untuk transformasi Fourier waktu-diskrit: X(ejω) = X(z)|z = e jω.
Sinyal Apa itu Sinyal?
Sinyal adalah
fenomena fisik yang bervariasi waktu yang dimaksudkan untuk menyampaikan
informasi.
ATAU
Sinyal adalah fungsi waktu.
ATAU
Sinyal adalah
fungsi dari satu atau lebih variabel independen, yang mengandung beberapa
informasi.
Sinyal adalah
fungsi dari satu atau lebih variabel yang menyampaikan informasi tentang
beberapa fenomena (biasanya fisik). Beberapa contoh sinyal antara lain:
• suara manusia
• tegangan dalam sirkuit elektronik
• suhu ruangan yang dikendalikan oleh sistem termostat
• posisi, kecepatan, dan percepatan pesawat terbang
• percepatan diukur dengan accelerometer di ponsel
• gaya yang diukur oleh sensor gaya dalam sistem robot
• gelombang elektromagnetik yang digunakan untuk mengirimkan informasi
dalam jaringan komputer nirkabel
• foto digital
• rekaman musik digital
• evolusi indeks pasar saham dari waktu ke waktu
❖ Klasifikasi Sinyal
Sinyal dapat
diklasifikasikan berdasarkan jumlah variabel independen yang terkait dengannya.
Sinyal yang merupakan fungsi dari satu variabel saja dikatakan satu dimensi.
Demikian pula, sinyal yang merupakan fungsi dari dua atau lebih variabel
dikatakan multidimensi. Ucapan manusia adalah contoh dari sinyal satu dimensi.
Dalam hal ini, kami memiliki sinyal yang terkait dengan fluktuasi tekanan udara
sebagai fungsi waktu. Contoh sinyal dua dimensi adalah gambar monokromatik.
Dalam hal ini, kami memiliki sinyal yang sesuai dengan ukuran intensitas cahaya
sebagai fungsi dari posisi horizontal dan vertikal. Suatu sinyal juga dapat
diklasifikasikan berdasarkan apakah itu fungsi dari variabel kontinu atau
diskrit. Sinyal yang merupakan fungsi dari variabel kontinu (misalnya, variabel
nyata) disebut waktu kontinu. Demikian pula, sinyal yang merupakan fungsi dari
variabel diskrit (misalnya, variabel bilangan bulat) dikatakan sebagai waktu
diskrit. Meskipun variabel independen tidak perlu mewakili waktu, untuk
kenyamanan, banyak terminologi yang dipilih seolah-olah demikian. x( t) x[n]
Misalnya,
gambar digital (yang terdiri dari susunan piksel persegi panjang) akan disebut
sebagai sinyal waktu diskrit, meskipun variabel independen (yaitu, posisi
horizontal dan vertikal) sebenarnya tidak sesuai dengan waktu. Jika sebuah
sinyal adalah fungsi dari variabel diskrit (yaitu, waktu diskrit) dan nilai
dari fungsi itu sendiri juga diskrit, sinyal tersebut dikatakan digital.
Demikian pula, jika sinyal adalah fungsi dari variabel kontinu, dan nilai
fungsi itu sendiri juga kontinu, sinyal tersebut dikatakan analog.
Banyak fenomena
di dunia fisik kita dapat dijelaskan dalam bentuk sinyal waktu kontinu.
Beberapa contoh sinyal waktu kontinu meliputi: bentuk gelombang tegangan atau
arus dalam sirkuit elektronik; rekaman elektrokardiogram, ucapan, dan musik;
posisi, kecepatan, dan percepatan benda yang bergerak; gaya dan torsi dalam
sistem mekanis; dan laju aliran cairan atau gas dalam proses kimia. Setiap
sinyal yang diproses oleh komputer digital (atau perangkat digital lainnya)
bersifat waktu diskrit. Beberapa contoh sinyal waktu diskrit meliputi video
digital, foto digital, dan data audio digital. Sinyal waktu-diskrit mungkin
secara inheren diskrit atau sesuai dengan versi sampel dari sinyal
waktu-kontinu. Contoh yang pertama adalah sinyal yang sesuai dengan indeks
pasar saham Dow Jones Industrial Average (yang hanya ditentukan pada interval
harian), sedangkan contoh yang terakhir adalah versi sampel dari sinyal ucapan
(waktu berkelanjutan).
• Notasi dan Representasi Grafis Sinyal
Dalam kasus sinyal waktu
diskrit, terkadang kita menyebut sinyal sebagai urutan. Elemen ke-n dari suatu
barisan x dinotasikan sebagai x(n) atau xn. Gambar
1.1 menunjukkan bagaimana sinyal
waktu kontinu dan waktu diskrit direpresentasikan secara grafis.
• Contoh Sinyal
Sejumlah contoh sinyal
telah disarankan sebelumnya. Di sini, kami menyediakan beberapa representasi
grafis dari sinyal untuk tujuan ilustrasi. Gambar 1.2 menggambarkan sinyal
ucapan digital. Gambar 1.3 menunjukkan contoh gambar monokromatik. Dalam hal
ini, sinyal mewakili intensitas cahaya sebagai fungsi dari dua variabel (yaitu
posisi horizontal dan vertikal).
Sistem Apa itu Sistem?
Sistem adalah
perangkat atau kombinasi perangkat, yang dapat beroperasi pada sinyal dan
menghasilkan respons yang sesuai. Input ke sistem disebut sebagai eksitasi dan
output darinya disebut sebagai Respons. Untuk satu atau lebih input, sistem
dapat memiliki satu atau lebih output. Contoh: Sistem Komunikasi.
Sistem adalah
entitas yang memproses satu atau lebih sinyal input untuk menghasilkan satu
atau lebih sinyal output, seperti yang ditunjukkan pada Gambar
1.4. Entitas seperti itu diwakili
secara matematis oleh sistem satu atau lebih persamaan. Dalam sistem
komunikasi, masukan dapat mewakili pesan yang akan dikirim, dan keluaran dapat
mewakili pesan yang diterima. Dalam sistem robotika, input dapat mewakili
posisi yang diinginkan dari efektor akhir (misalnya, gripper), sedangkan output
dapat mewakili posisi sebenarnya.
• Klasifikasi
Sistem
Suatu sistem
dapat diklasifikasikan berdasarkan jumlah input dan output yang dimilikinya.
Sebuah sistem dengan hanya satu input digambarkan sebagai input tunggal,
sedangkan sistem dengan banyak input digambarkan sebagai multi-input. Demikian
pula, sebuah sistem dengan hanya satu output dikatakan single output, sedangkan
sistem dengan banyak output dikatakan multi-output. Dua jenis sistem yang umum
terjadi adalah single-input single-output (SISO) dan multi-input multioutput
(MIMO). Suatu sistem juga dapat diklasifikasikan berdasarkan jenis sinyal yang
berinteraksi dengannya. Suatu sistem yang berurusan dengan sinyal waktu kontinu
disebut sistem waktu kontinu. Demikian pula, sistem yang berhubungan dengan
sinyal waktu diskrit dikatakan sebagai sistem waktu diskrit. Suatu sistem yang
menangani sinyal waktu kontinu dan diskrit, kadang-kadang disebut sebagai
sistem hibrid (atau sistem data sampel). Demikian pula, sistem yang menangani
sinyal digital disebut digital, sedangkan sistem yang menangani sinyal analog
disebut analog. Jika suatu sistem berinteraksi dengan sinyal satu dimensi,
sistem tersebut disebut sebagai satu dimensi. Demikian juga, jika suatu sistem
menangani sinyal multidimensi, sistem tersebut dikatakan multidimensi. Sistem
dapat memanipulasi sinyal dengan berbagai cara dan melayani banyak tujuan yang
berguna. Terkadang sistem berfungsi untuk mengekstraksi informasi dari sinyal
inputnya. Misalnya, dalam hal sinyal ucapan, sistem dapat digunakan untuk
melakukan identifikasi pembicara atau pengenalan suara. Suatu sistem mungkin
menganalisis sinyal elektrokardiogram untuk mendeteksi kelainan jantung.
Amplifikasi dan pengurangan noise
adalah fungsi lain yang dapat ditawarkan sistem.
• Contoh Sistem
Sistem dapat
memanipulasi sinyal dengan berbagai cara dan melayani banyak tujuan yang
berguna. Terkadang sistem berfungsi untuk mengekstraksi informasi dari sinyal
inputnya. Misalnya, dalam hal sinyal ucapan, sistem dapat digunakan untuk
melakukan identifikasi pembicara atau pengenalan suara. Suatu sistem mungkin
menganalisis sinyal elektrokardiogram untuk mendeteksi kelainan jantung.
Amplifikasi dan pengurangan noise adalah fungsi lain yang dapat ditawarkan
sistem.
Salah satu
sistem yang sangat mendasar adalah jaringan resistor-kapasitor (RC) yang
ditunjukkan pada Gambar 1.5. Di sini, inputnya adalah tegangan sumber vs dan
outputnya adalah tegangan kapasitor vc.
Pertimbangkan
sistem pemrosesan sinyal yang ditunjukkan pada Gambar 1.6. Sistem pada Gambar
1.6(a) menggunakan sistem waktu diskrit (seperti komputer digital) untuk
memproses sinyal waktu kontinu. Sistem pada Gambar 1.6(b) menggunakan sistem
waktu kontinu (seperti komputer analog) untuk memproses sinyal waktu diskrit.
Yang pertama dari jenis sistem ini ada di manamana di dunia saat ini.
Pertimbangkan sistem komunikasi yang ditunjukkan pada Gambar 1.7.
Sistem ini mengambil pesan di satu
lokasi dan mereproduksi pesan ini di lokasi lain. Dalam hal ini, masukan sistem
adalah pesan yang akan dikirim, dan keluarannya adalah perkiraan pesan asli.
Biasanya, kami ingin pesan yang direproduksi di penerima sedekat mungkin dengan
pesan asli yang dikirim oleh pemancar.
Suatu sistem
dengan bentuk umum yang ditunjukkan pada Gambar 1.8 sering muncul dalam aplikasi
kontrol. Seringkali, dalam aplikasi seperti itu, kami menginginkan keluaran
untuk melacak beberapa masukan referensi sedekat mungkin. Pertimbangkan,
misalnya, aplikasi robotika. Input referensi mungkin mewakili posisi yang
diinginkan dari efektor akhir, sedangkan output mewakili posisi sebenarnya.
Author's Message
My wish is that
the reader will enjoy learning the theory of signals and systems by using this
book. One of my goals is to present the theory in a direct and straightforward
manner. Another goal is to instill interest in different areas of
specialization of electrical and computer engineering
Lembar
Simulasi
PRAKTIK
MENYUNTING NASKAH
DALAM
BAHASA INGGRIS
(PBLL-Editing)
Serahkan kumpulan portfolio hasil
belajar Bahasa Inggris pada saat UAS berupa: UTS, bahanPresentasi PPT
Kelompokdenganbukti-buktiberikut:
1. Lembar
asli JawabanUjian Tengah Semester (UTS), Idol, PPT kelompok
2. Bukti
Perbaikan dalam bentuk Terketik Rapi
3. Bukti
Penerapan Simbol Penyuntingan oleh Editor MitraBelajar di Kelas
4. Naskah
Bersih hasil suntingan Editor Mitra Belajar di Kelas
5. Lembar
Bukti Penerapan Hasil Penyuntingan
Catatan:
1. Naskah
Bersih hasil suntingan dikumpulkan oleh Koordinator untuk layout bersih dan
digandakan menjadi buku karya kelas.
2. Judul
buku dan gambaran Desain
Cover serta Pengantar Buku akan
diemail ke Koordinator oleh Dosen sebagai Supervisor.
3. PembuatanVideoflogbersifat
individual untuk kemungkinan memperoleh nilai optimal (A)
|
|
LEARNING
TREATMENT |
|
|||
|
No |
PBLL- Approach |
Meeting |
Portfolios |
Learning Output |
Learning Outcome |
|
01 |
Prewriting |
1-8 (UTS) |
PPT Kelompok, Idol Writing, Hasil UTS |
Intend to be Self-Publishers |
Reading.
Writing. |
|
02 |
Drafting |
||||
|
03 |
Revising |
||||
|
|
|
|
|
|
|
|
04 |
Editing |
9-16 (UAS |
Book Dummy (PPT Kelompok, Idol Writing, UAS) Individual Voice in Video |
Digital Publishing Member
of www.polakata.com by
registering to |
Listening. Speaking about Civil Engineering |
|
05 |
Publishing |
||||
|
06 |
Marketing |
||||
|
|
|
||||
|
07
|
Delivering
|
|
|
|
|
EDITORIAL
SKILL IN
ENGLISH
PUBLIPRENEUR-
BASED
LANGUAGE
LEARNING
(PBLL-Editing)
|
INSTRUCTIONS |
|
|||||||||||||
|
1.
Use the red ink pen to mark your editorial findings 2.
Write the name of the manuscript’s writer within the box 3.
Write your name as an editor within the editor’s box 4.
Write the title of the manuscript 5.
Treat the draft as an accepted manuscript to the Editorial
Department. 6.
Edit the manuscript by using the editorial signs 7.
Put the number of your editorial findings (mechanical,
substantive, pictorial) within the box right- side 8.
Write your verbal verification of suggestion, comment, or
input for the improvement of the manuscript. 9.
Give your editorial judgment about the manuscript from the
perspective of prewriting, drafting, revising, editing, publishing,
marketing, and delivering) 10.
Good Luck..be your best. |
|
|||||||||||||
|
Students’ Identity |
Writer |
Editor |
|
|||||||||||
|
Name |
Firliyan Apriansyah |
Rizki
Ervino Pria Dipa |
|
|||||||||||
|
Study Program |
Electrical Engineering |
Electrical Engineering |
|
|||||||||||
|
Title of Manuscript |
Why do countries have different Signal and Systems? |
|
||||||||||||
|
C=Competence : NC= Non Competence |
|
|||||||||||||
|
No
|
Editorial
Findings |
Number |
Key
Word |
C
|
NC |
|
||||||||
|
A |
Mechanical Editing |
|
|
|
types |
|
||||||||
|
|
• Types |
-
|
-
|
-
|
- |
|
||||||||
|
|
• Words |
-
|
-
|
- |
phrase |
|
||||||||
|
|
• Phrase |
-
|
-
|
-
|
-
|
|
||||||||
|
|
• Clause |
-
|
-
|
-
|
-
|
|
||||||||
|
|
• Punctuations |
-
|
- |
-
|
-
|
|
||||||||
|
|
• Comma |
-
|
|
-
|
-
|
|
||||||||
|
|
• Colon |
-
|
-
|
-
|
-
|
|
||||||||
|
|
• Semi
Colon |
- |
- |
- |
- |
|
||||||||
|
|
• Preposition
|
- |
- |
- |
- |
|
||||||||
|
|
• Dictions
|
- |
- |
- |
- |
|
||||||||
|
B |
Substantive Editing |
|
|
|
|
|
||||||||
|
|
• Content
Accuracy |
- |
- |
- |
- |
|
||||||||
|
|
• Language
Consistenc
y |
- |
- |
- |
- |
|
||||||||
|
|
• Message Originality |
- |
- |
- |
- |
|
||||||||
|
|
• Reader’s
Interest |
- |
- |
- |
- |
|
||||||||
|
|
• Coherence
|
- |
- |
- |
- |
||||||||
|
C |
Pictorial Editing |
|
|
|
|
||||||||
|
|
• Harmony
|
- |
- |
- |
- |
||||||||
|
|
• Balancing
|
- |
- |
- |
- |
||||||||
|
|
• White
Space |
- |
- |
- |
- |
||||||||
|
|
• Color
|
- |
- |
- |
- |
||||||||
|
Verbal Verification: |
|||||||||||||
|
There
are several author errors in writing, namely the wrong placement of spaces and the use of capital letters. |
|||||||||||||
|
|
|||||||||||||
|
Editorial Judgment I
think the sentence-by-sentence that the author wrote is very good and very
easy to understand for readers to read, but in writing, there are some words
that I need to improve, such as example, describing, rigid body, etc. but
overall I appreciate the author in choosing sentence by sentence. |
|||||||||||||
QUESTIONERS
OF PUBLIPRENEUR-BASED
LANGUAGE
LEARNING (PBLL) USED TO TEACH
ENGLISH FOR SPECIFIC PURPOSES OF
ELECTRO ENGINEERING
AT
MUHAMMADIYAH UNIVERSITY
|
Name |
Firliyan Apriansyah |
||||
|
Study Program |
Electrical Engineering |
||||
|
Lecturer |
Dr. Zalzulifa, M.Pd |
||||
|
No |
Questioners |
Much (M); Enough (E); Less (L) |
Reasons |
||
|
M |
E |
L |
|||
|
1 |
How far do you know about the concept of the
Publipreneur-Based Language Learning (PBLL) approach in language teaching |
√
|
|
|
The
application of ProblemBased Learning in Physical Therapy courses begins by
raising real cases that students face when implementing them. After selecting
one case, then a theoretical study of the case was carried out both from
textbooks and from the results of a study of similar cases. The internet can
be a means which is very helpful. Cases that have been completed with theoretical
studies are then presented for criticism in terms of the accuracy of
diagnosis, effectiveness of therapy, and continuation of rehabilitation. required readiness of all
discussion participants to listen, reflect and express logically and
systematically. |
|
2 |
Do
you think that the PublipreneurBased Language Learning (PBLL) approach
applicable used to teach English for Specific Purposes (ESP) |
√
|
|
|
Yes of course, in addition to course content, PBL
can promote the development of critical thinking skills, problemsolving
abilities, and communication skills. It can also provide opportunities for
working in groups, finding and |
|
|
|
|
|
|
evaluating research materials, and lifelong learning. |
|
3 |
How
far does Publipreneur-Based Language Learning (PBLL) influence your English
Reading skill in Electro Engineering Business |
|
√
|
|
Pretty good, but I'm still a little difficult to
understand how many words and accent pronunciation. |
|
4 |
How
far does Publipreneur-Based Language Learning (PBLL) influence your English
Writing skill in Electro Engineering Business |
|
√
|
|
Maybe the influence is quite big because in today's
modern era computers allow large amounts of information and of course can
facilitate trends as a means of learning. It can also provide instant
feedback to learners to improve their writing skills. |
|
5 |
How far does Publipreneur-Based Language Learning (PBLL) influence your English Listening
skill in Electro Engineering Business |
|
√
|
|
Quite helpful because there are so many factors that
affect us besides studying Publippreneur-Based
Language Learning (PBLL). such as motivation,
attitude, age, intelligence, talent, cognitive style, and personality are
considered factors that greatly influence a person in the process of
mastering his second language. |
|
6 |
How far does Publipreneur-Based Language Learning (PBLL)
influence your English Speaking skill in Electro Engineering Business |
|
√
|
|
Very lacking, because I often
stammer when speaking english. |



Komentar
Posting Komentar